COVID-19 Neurological consequences

SARS-CoV-2 virus image source

Read our specific page about Post-COVID syndrome / Long-COVID syndrome that is associated with long-term complaints via this link.

 

A publication in Neurology November 16, 2021 confirms that there are specific neurological complications associated with COVID-19 infection.
Some of the people hospitalized with COVID-19 had a CVA (stroke) due to thrombosis (clots), and there are patients who have hypercoagulability (clotting disorders) during the acute phase.
There are people who develop microvascular disease, specifically microhemorrhages throughout the brain at the boundary between the gray matter and the white matter.

 

All over the world there are people who have serious neurological complaints or brain damage from an infection with Covid-19. Not all people with Covid-19 have these long-term symptoms, but they can occur. Most of these symptoms are neurological in nature.

 

These manifestations are of different phenotypes with overlapping syndromes.

  • Predominantly exercise intolerance.
  • Cognitive and mood disorders.
  • Some of the patients have acute anxiety or early onset psychosis.
  • There are others who have dysautonomia (blood pressure or heart rate problems and feeling unwell) and some have classic POTS as a syndrome. (postoral orthostatic tachycardia syndrome = extreme increase in heart rate when standing or sitting up.)
  • Then there is a fourth group whose symptoms resemble fibromyalgia and other pain syndromes.
  • Finally there is a smaller group of individuals who suffer from hearing loss, tinnitus (ringing in the ears) and vestibular disorders (balance problems).

 

A study from Wuhan showed that 36.4% of patients admitted to a hospital had neurological complaints.

There are also people who only entered the hospital with neurological complaints and were found to have Covid-19 without typical Covid-19 complaints.

Dutch researchers have discovered that Corona can cause the immune system in the brain to 'run wild'. Research by autopsy on the brains of deceased people showed more brain macrophages in the brains of people suffering from Covid-19 than in healthy brains.

Brain macrophages are primary immune cells of the central nervous system and continuously monitor whether an infection is in progress.

The brain magrophages of the examined brains looked like a lot of brown specks under the microscope. The large number of brain macrophages shows that the immune system was running wild.

A researcher stated that corona can affect every function in the brain: sensory functions, movements, feeling, memory and concentration.

 

Neurological syndromes as a complication of Covid-19

 

Neurological and Neuropsychological Consequences After Corona / Covid-19 Infection

 

Neurological complaints during hospitalization (NON-typical Covid-19 complaints)

People have been admitted to hospitals worldwide without specific Covid-19 complaints such as coughing or fever, but they did have typical neurological complaints.

  1. Headache, dizziness, impaired consciousness, ataxia, acute stroke / CVA and epilepsy
  2. Impaired ability to taste things (hypogeusia), impaired ability to smell and detect odors (hyposmia) and neuropathic pain (neuralgia)
  3. Skeletal muscle symptoms.

 

When these patients were tested, they were found to have Covid-19.
In rare cases, the cornavirus appears to be able to enter the brain directly, says Dr. Elissa Fory, a neurologist with Henry Ford Health System.

Observed symptoms

 

Neurologists in Wuhan, China, where the Covid-19 outbreak began, were the first to report the symptoms in a preliminary article published online.
A study showed that 36.4% of the patients admitted there had neurological complaints (acute stroke / cerebrovascular disorders, reduced consciousness and muscle damage).

Since that report, specialists have observed similar symptoms in Germany, France, Austria, Italy, and the Netherlands, as well as in the United States. Including in patients under 60 years of age.

More information can be found here.

 

Four elderly patients who came to Danbury Hospital in Connecticut with an encephalopathy tested positive for Covid-19, although they had no other symptoms. Two of the four developed a mild fever and needed oxygen, but two of them did not.

 

"The way the coronavirus evolved rapidly over days is consistent with viral encephalitis," said Dr. Elissa Fory, a neurologist with Henry Ford Health System to the New York Times.
Some studies report that more than a third of patients show neurological symptoms.

 

SARS-CoV-2, the coronavirus that causes COVID-19, can cause neurological disorders due to direct infection of the brain or due to the strong activation of the immune system. The virus can break the blood brain barrier.

ACE2 is a protein involved in the regulation of blood pressure. It is the receptor that the virus uses to enter and infect cells.
ACE2 can be found on the inner wall (endothelial cells) of the blood vessels. The human brain cells have the ACE2 protein on the surface. Endothelial cell infection can pass the virus from the respiratory tract to the blood and then across the blood-brain barrier to the brain.

Once in the brain, multiplication of the virus can cause neurological disturbances.

Recent studies have found the coronavirus in the brains of people who died of COVID-19.
It has also been suggested that contamination of olfactory neurons in the nose may allow the virus to spread from the airways to the brain.

 

PICS

In addition to cognitive complaints due to brain damage, complaints may also have arisen due to Post intensive care syndrome (PICS). New or worsened complaints that arise as a result of a critical illness and intensive care treatment.

  • Physical complaints (fatigue, acquired muscle weakness, difficulty swallowing, loss of condition, shortness of breath)
  • Cognitive complaints
  • Psychological problems (anxiety, PTSD, depression)
  • Stimulus sensitivity

Partners, relatives and other loved ones can also develop PICS, called Post Intensive Care Syndrome Family, or PICS-F.
Read more.

 

Check

In case you are unsure whether you have a brain injury or cognitive complaints from the corona infection, you can fill in our ABI checklist. ABI (Aquired Brain Injury) means Non-Congenital Brain Injury, brain damage that has been incurred later in life.

 

Research on long-term (neurological or brain damage) complaints after having Covid-19

 

Langdurige klachten na ongecompliceerde Covid-19, Nederlands Tijdschrift voor Geneeskunde.

Van den Borst, B. e.a., Comprehensive health assessment three months after recovery from acute COVID-19:, Clinical Infectious Diseases (21 november 2020), ciaa1750, DOI

Morris. S.B. e.a., Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection — United Kingdom and United States, March–August 2020, Morb Mortal Wkly Rep 2020;69: 1450–1456. DOI

Woodruff, M.C. e.a., Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection, medRxiv 2020.10.21.20216192; DOI

Oudkerk, M. e.a., Diagnosis, Prevention, and Treatment of Thromboembolic Complications in COVID-19: Report of the National Institute for Public Health of the Netherlands, Radiology 2020 297:1, E216-E222, DOI

 

https://www.practiceupdate.com/C/126949/56?elsca1=emc_enews_topic-alert

Avindra Nath MD Published in Neurology

Nierfalen of verminderde nierfunctie door COVID-19

https://www.reuters.com/business/healthcare-pharmaceuticals/covid-raises-risk-long-term-brain-injury-large-us-study-finds-2022-09-22/

https://www.frontiersin.org/articles/10.3389/fnins.2022.855868/full

 

Al-Kuraishy, H. M., Al-Gareeb, A. I., Qusti, S., Alshammari, E. M., Gyebi, G. A., and Batiha, G. E. (2021). Covid-19-induced dysautonomia: a menace of sympathetic storm. ASN Neuro 13:17590914211057635. doi: 10.1177/17590914211057635 PubMed Abstract | CrossRef Full Text | Google Scholar

Backman, L., Möller, M. C., Thelin, E. P., Dahlgren, D., Deboussard, C., Östlund, G., et al. (2021). Monthlong intubated patient with life-threatening COVID-19 and cerebral microbleeds suffers only mild cognitive sequelae at 8-month follow-up: a case report. Arch. Clin. Neuropsychol. 37, 531–543. doi: 10.1093/arclin/acab075

PubMed Abstract | CrossRef Full Text | Google Scholar

Baig, A. M., Khaleeq, A., Ali, U., and Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998. doi: 10.1021/acschemneuro.0c00122

PubMed Abstract | CrossRef Full Text | Google Scholar

Bennett, I. J., and Madden, D. J. (2014). Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276, 187–205. doi: 10.1016/j.neuroscience.2013.11.026

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., et al. (2016). Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 15, 369–391. doi: 10.1007/s12311-015-0687-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Bohmwald, K., Gálvez, N. M. S., Ríos, M., and Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Front. Cell Neurosci. 12:386. doi: 10.3389/fncel.2018.00386

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J. L., Navis, G. J., Gordijn, S. J., et al. (2020). Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 251, 228–248. doi: 10.1002/path.5471

PubMed Abstract | CrossRef Full Text | Google Scholar

Bussière, N., Mei, J., Lévesque-Boissonneault, C., Blais, M., Carazo, S., Gros-Louis, F., et al. (2021). Chemosensory dysfunctions induced by COVID-19 can persist up to 7 months: a study of over 700 healthcare workers. Chem. Senses. 46:bjab038. doi: 10.1093/chemse/bjab038

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Caronna, E., and Pozo-Rosich, P. (2021). Headache as a symptom of COVID-19: narrative review of 1-year research. Curr. Pain Headache Rep. 25:73.

PubMed Abstract | Google Scholar

Cecchini, M. P., Brozzetti, L., Cardobi, N., Sacchetto, L., Gibellini, D., Montemezzi, S., et al. (2021). Persistent chemosensory dysfunction in a young patient with mild COVID-19 with partial recovery 15 months after the onset. Neurol. Sci. 43, 99–104.

PubMed Abstract | Google Scholar

Cecchini, M. P., Brozzetti, L., Cardobi, N., Sacchetto, L., Gibellini, D., Montemezzi, S., et al. (2022). Persistent chemosensory dysfunction in a young patient with mild COVID-19 with partial recovery 15 months after the onset. Neurol. Sci. 43, 99–104. doi: 10.1007/s10072-021-05635-y

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Chakravarty, N., Senthilnathan, T., Paiola, S., Gyani, P., Castillo Cario, S., Urena, E., et al. (2021). Neurological pathophysiology of SARS-CoV-2 and pandemic potential RNA viruses: a comparative analysis. FEBS Lett. 595, 2854–2871. doi: 10.1002/1873-3468.14227

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., et al. (2020). Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629. doi: 10.1172/JCI137244

PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 368:m1091. doi: 10.1136/bmj.m1091

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Cipriani, G., Danti, S., Nuti, A., Carlesi, C., Lucetti, C., and Di Fiorino, M. (2020). A complication of coronavirus disease 2019: delirium. Acta Neurol. Belg. 120, 927–932. doi: 10.1007/s13760-020-01401-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Colonna, S., Sciumé, L., Giarda, F., Innocenti, A., Beretta, G., and Dalla Costa, D. (2020). Case report: postacute rehabilitation of guillain-barré syndrome and cerebral vasculitis-like pattern accompanied by SARS-CoV-2 infection. Front. Neurol. 11:602554. doi: 10.3389/fneur.2020.602554

PubMed Abstract | CrossRef Full Text | Google Scholar

Dagenais, N. J., and Jamali, F. (2005). Protective effects of angiotensin II interruption: evidence for antiinflammatory actions. Pharmacotherapy 25, 1213–1229. doi: 10.1592/phco.2005.25.9.1213

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Davis, H. E., Assaf, G. S., McCorkell, L., Wei, H., Low, R. J., Re’em, Y., et al. (2021). Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 38:101019. doi: 10.1016/j.eclinm.2021.101019

PubMed Abstract | CrossRef Full Text | Google Scholar

De Moraes De Medeiros, S., Vandresen, R., Gomes, E., and Mazzuco, E. (2021). Mental health and quality of life in COVID-19 survivors: a needed discussion. J. Intern. Med. 290, 744–745. doi: 10.1111/joim.13342

PubMed Abstract | CrossRef Full Text | Google Scholar

DeKosky, S. T., Kochanek, P. M., Valadka, A. B., Clark, R. S. B., Chou, S. H., Au, A. K., et al. (2021). Blood biomarkers for detection of brain injury in COVID-19 patients. J. Neurotrauma 38, 1–43. doi: 10.1089/neu.2020.7332

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Denehy, L., and Puthucheary, Z. (2021). Surviving COVID-19: a familiar road to recovery? Lancet Respir. Med. 9, 1211–1213. doi: 10.1016/S2213-2600(21)00447-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Dressing, A., Bormann, T., Blazhenets, G., Schroeter, N., Walter, L. I., Thurow, J., et al. (2021). Neuropsychological profiles and cerebral glucose metabolism in neurocognitive long COVID-syndrome. J. Nucl. Med. [Epub ahead of print]. doi: 10.2967/jnumed.121.262677

PubMed Abstract | CrossRef Full Text | Google Scholar

Ellul, M. A., Benjamin, L., Singh, B., Lant, S., Michael, B. D., Easton, A., et al. (2020). Neurological associations of COVID-19. Lancet Neurol. 19, 767–783.

Google Scholar

Ermis, U., Rust, M. I., Bungenberg, J., Costa, A., Dreher, M., Balfanz, P., et al. (2021). Neurological symptoms in COVID-19: a cross-sectional monocentric study of hospitalized patients. Neurol. Res. Pract. 3:17. doi: 10.1186/s42466-021-00116-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Evans, R. A., McAuley, H., Harrison, E. M., Shikotra, A., Singapuri, A., Sereno, M., et al. (2021). Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study. Lancet Respir. Med. 9, 1275–1287. doi: 10.1016/S2213-2600(21)00383-0

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Feng, M., Li, Z., Xiong, J., Xu, W., and Xiang, B. (2021a). Geographical and epidemiological characteristics of 3,487 confirmed cases with COVID-19 among healthcare workers in China. Front. Public Health 8:586736. doi: 10.3389/fpubh.2020.586736

PubMed Abstract | CrossRef Full Text | Google Scholar

Feng, M., Ling, Q., Xiong, J., Manyande, A., Xu, W., and Xiang, B. (2021b). Geographical and epidemiological characteristics of sporadic coronavirus disease 2019 outbreaks from June to December 2020 in China: an overview of environment-to-human transmission events. Front. Med. 8:654422. doi: 10.3389/fmed.2021.654422

PubMed Abstract | CrossRef Full Text | Google Scholar

Feng, M., Ling, Q., Xiong, J., Manyande, A., Xu, W., and Xiang, B. (2021c). Occupational characteristics and management measures of sporadic COVID-19 outbreaks From June 2020 to January 2021 in China: the importance of tracking down “Patient Zero”. Front. Public Health 9:670669. doi: 10.3389/fpubh.2021.670669

PubMed Abstract | CrossRef Full Text | Google Scholar

Filley, C. M., and Fields, R. D. (2016). White matter and cognition: making the connection. J. Neurophysiol. 116, 2093–2104. doi: 10.1152/jn.00221.2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Freeman, C. W., Masur, J., Hassankhani, A., Wolf, R. L., Levine, J. M., and Mohan, S. (2021). Coronavirus disease (COVID-19)-related disseminated leukoencephalopathy: a retrospective study of findings on brain MRI. Am. J. Roentgenol. 216, 1046–1047. doi: 10.2214/AJR.20.24364

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Fugate, J. E., and Rabinstein, A. A. (2015). Posterior reversible encephalopathy syndrome: clinical and radiological manifestations, pathophysiology, and outstanding questions. Lancet Neurol. 14, 914–925. doi: 10.1016/S1474-4422(15)00111-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Garrigues, E., Janvier, P., Kherabi, Y., Le Bot, A., Hamon, A., Gouze, H., et al. (2020). Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 81, e4–e6. doi: 10.1016/j.jinf.2020.08.029

PubMed Abstract | CrossRef Full Text | Google Scholar

Gewirtz, A. N., Gao, V., Parauda, S. C., and Robbins, M. S. (2021). Posterior reversible encephalopathy syndrome. Curr. Pain Headache Rep. 25:19.

Google Scholar

 

Guedj, E., Campion, J. Y., Dudouet, P., Kaphan, E., Bregeon, F., Tissot-Dupont, H., et al. (2021). (18)F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl Med. Mol. Imaging 48, 2823–2833. doi: 10.1007/s00259-021-05215-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Han, K. M., and Ham, B. J. (2021). How inflammation affects the brain in depression: a review of functional and structural MRI studies. J. Clin. Neurol. 17, 503–515. doi: 10.3988/jcn.2021.17.4.503

PubMed Abstract | CrossRef Full Text | Google Scholar

Haqiqi, A., Samuels, T. L., Lamb, F. J., Moharrum, T., and Myers, A. E. (2021). Acute haemorrhagic leukoencephalitis (Hurst disease) in severe COVID- 19 infection. Brain Behav. Immun. Health 12:100208. doi: 10.1016/j.bbih.2021.100208

PubMed Abstract | CrossRef Full Text | Google Scholar

Hazzaa, N. M. (2021). Neurological complications associated with coronavirus disease-2019 (COVID-19): MRI features. Heliyon 7:e07879. doi: 10.1016/j.heliyon.2021.e07879

PubMed Abstract | CrossRef Full Text | Google Scholar

He, Z., Xiang, H., Manyande, A., Xu, W., Fan, L., and Xiang, B. (2021). Epidemiological characteristics of sporadic nosocomial COVID-19 infections from June 2020 to June 2021 in China: an overview of vaccine breakthrough infection events. Front. Med. 8:736060. doi: 10.3389/fmed.2021.736060

PubMed Abstract | CrossRef Full Text | Google Scholar

Heesakkers, H., van der Hoeven, J. G., Corsten, S., Janssen, I., Ewalds, E., Burgers-Bonthuis, D., et al. (2022). Mental health symptoms in family members of COVID-19 ICU survivors 3 and 12 months after ICU admission: a multicentre prospective cohort study. Intensive Care Med. 48, 322–331. doi: 10.1007/s00134-021-06615-8

PubMed Abstract | CrossRef Full Text | Google Scholar

Hellgren, L., Birberg Thornberg, U., Samuelsson, K., Levi, R., Divanoglou, A., and Blystad, I. (2021). Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study. BMJ Open 11:e055164. doi: 10.1136/bmjopen-2021-055164

PubMed Abstract | CrossRef Full Text | Google Scholar



Hixon, A. M., Thaker, A. A., and Pelak, V. S. (2021). Persistent visual dysfunction following posterior reversible encephalopathy syndrome due to COVID-19: case series and literature review. Eur. J. Neurol. 28, 3289–3302. doi: 10.1111/ene.14965

PubMed Abstract | CrossRef Full Text | Google Scholar

Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., et al. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232.

Google Scholar

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.

Google Scholar

Ismail, I. I., and Gad, K. A. (2021). Absent blood oxygen level-dependent functional magnetic resonance imaging activation of the orbitofrontal cortex in a patient with persistent cacosmia and cacogeusia after COVID-19 infection. JAMA Neurol. 78, 609–610. doi: 10.1001/jamaneurol.2021.0009

PubMed Abstract | CrossRef Full Text | Google Scholar

Kanberg, N., Simrén, J., Edén, A., Andersson, L. M., Nilsson, S., Ashton, N. J., et al. (2021). Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine 70:103512. doi: 10.1016/j.ebiom.2021.103512

PubMed Abstract | CrossRef Full Text | Google Scholar

Kandemirli, S. G., Dogan, L., Sarikaya, Z. T., Kara, S., Akinci, C., Kaya, D., et al. (2020). Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 297, E232–E235. doi: 10.1148/radiol.2020201697

PubMed Abstract | CrossRef Full Text | Google Scholar

Kas, A., Soret, M., Pyatigoskaya, N., Habert, M. O., Hesters, A., Le Guennec, L., et al. (2021). The cerebral network of COVID-19-related encephalopathy: a longitudinal voxel-based 18F-FDG-PET study. Eur. J. Nucl. Med. Mol. Imaging 48, 2543–2557. doi: 10.1007/s00259-020-05178-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Kumar, A., Narayan, R. K., Kumari, C., Faiq, M. A., Kulandhasamy, M., Kant, K., et al. (2020). SARS-CoV-2 cell entry receptor ACE2 mediated endothelial dysfunction leads to vascular thrombosis in COVID-19 patients. Med. Hypotheses. 145:110320. doi: 10.1016/j.mehy.2020.110320

PubMed Abstract | CrossRef Full Text | Google Scholar

Lang, M., Chang, Y. S., Mehan, W. A. Jr., Rincon, S. P., and Buch, K. (2021). Long-term neuroimaging follow-up of COVID-19-related leukoencephalopathy. Neuroradiology 63, 2153–2156. doi: 10.1007/s00234-021-02829-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Lechien, J. R., Chiesa-Estomba, C. M., De Siati, D. R., Horoi, M., Le Bon, S. D., Rodriguez, A., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. 277, 2251–2261. doi: 10.1007/s00405-020-05965-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Li, Z., Liu, T., Yang, N., Han, D., Mi, X., Li, Y., et al. (2020). Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 14, 533–541. doi: 10.1007/s11684-020-0786-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Liang, L., Yang, B., Jiang, N., Fu, W., He, X., Zhou, Y., et al. (2020). Three-month follow-up study of survivors of coronavirus disease 2019 after discharge. J. Korean Med. Sci. 35:e418. doi: 10.3346/jkms.2020.35.e418

PubMed Abstract | CrossRef Full Text | Google Scholar

Lindan, C. E., Mankad, K., Ram, D., Kociolek, L. K., Silvera, V. M., Boddaert, N., et al. (2021). Neuroimaging manifestations in children with SARS-CoV-2 infection: a multinational, multicentre collaborative study. Lancet Child Adolesc. Health 5, 167–177.

doi: 10.1016/S2352-4642(20)30362-X

PubMed Abstract | CrossRef Full Text | Google Scholar

Lu, Y., Li, X., Geng, D., Mei, N., Wu, P. Y., Huang, C. C., et al. (2020). Cerebral micro-structural changes in COVID-19 patients - an MRI-based 3-month follow-up study. EClinicalMedicine 25:100484. doi: 10.1016/j.eclinm.2020.100484

PubMed Abstract | CrossRef Full Text | Google Scholar

Luo, H., Gao, Y., Zou, J., Zhang, S., Chen, H., Liu, Q., et al. (2020). Reflections on treatment of COVID-19 with traditional Chinese medicine. Chin. Med. 15:94. doi: 10.1186/s13020-020-00375-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Mahammedi, A., Saba, L., Vagal, A., Leali, M., Rossi, A., Gaskill, M., et al. (2020). Imaging of neurologic disease in hospitalized patients with COVID-19: an italian multicenter retrospective observational study. Radiology 297, E270–E273. doi: 10.1148/radiol.2020201933

PubMed Abstract | CrossRef Full Text | Google Scholar

Mainland, J. D., Johnson, B. N., Khan, R., Ivry, R. B., and Sobel, N. (2005). Olfactory impairments in patients with unilateral cerebellar lesions are selective to inputs from the contralesional nostril. J. Neurosci. 25, 6362–6371. doi: 10.1523/JNEUROSCI.0920-05.2005

PubMed Abstract | CrossRef Full Text | Google Scholar

Malik, P., Patel, K., Pinto, C., Jaiswal, R., Tirupathi, R., Pillai, S., et al. (2022). Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-A systematic review and meta-analysis. J. Med. Virol. 94, 253–262. doi: 10.1002/jmv.27309

PubMed Abstract | CrossRef Full Text | Google Scholar

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690. doi: 10.1001/jamaneurol.2020.1127

PubMed Abstract | CrossRef Full Text | Google Scholar

Mayi, B. S., Leibowitz, J. A., Woods, A. T., Ammon, K. A., Liu, A. E., and Raja, A. (2021). The role of Neuropilin-1 in COVID-19. PLoS Pathog. 17:e1009153. doi: 10.1371/journal.ppat.1009153

PubMed Abstract | CrossRef Full Text | Google Scholar

Mazza, M. G., De Lorenzo, R., Conte, C., Poletti, S., Vai, B., Bollettini, I., et al. (2020). Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 89, 594–600. doi: 10.1016/j.bbi.2020.07.037

PubMed Abstract | CrossRef Full Text | Google Scholar

McMahon, P. J., Panczykowski, D. M., Yue, J. K., Puccio, A. M., Inoue, T., Sorani, M. D., et al. (2015). Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma 32, 527–533. doi: 10.1089/neu.2014.3635

PubMed Abstract | CrossRef Full Text | Google Scholar

Meinhardt, J., Radke, J., Dittmayer, C., Franz, J., Thomas, C., Mothes, R., et al. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 24, 168–175. doi: 10.1038/s41593-020-00758-5

PubMed Abstract | CrossRef Full Text | Google Scholar

Mifflin, L., Ofengeim, D., and Yuan, J. (2020). Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat. Rev. Drug Discov. 19, 553–571. doi: 10.1038/s41573-020-0071-y

PubMed Abstract | CrossRef Full Text | Google Scholar

Miners, S., Kehoe, P. G., and Love, S. (2020). Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res. Ther. 12:170. doi: 10.1186/s13195-020-00744-w

PubMed Abstract | CrossRef Full Text | Google Scholar

Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., et al. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 94, 55–58. doi: 10.1016/j.ijid.2020.03.062

PubMed Abstract | CrossRef Full Text | Google Scholar

Mumoli, N., Vitale, J., and Mazzone, A. (2020). Clinical immunity in discharged medical patients with COVID-19. Int. J. Infect. Dis. 99, 229–230. doi: 10.1016/j.ijid.2020.07.065

PubMed Abstract | CrossRef Full Text | Google Scholar

Nuzzo, D., Cambula, G., Bacile, I., Rizzo, M., Galia, M., Mangiapane, P., et al. (2021). Long-term brain disorders in post COVID-19 neurological syndrome (PCNS) patient. Brain Sci. 11:454. doi: 10.3390/brainsci11040454

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Oxley, T. J., Mocco, J., Majidi, S., Kellner, C. P., Shoirah, H., Singh, I. P., et al. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med. 382:e60. doi: 10.1056/NEJMc2009787

PubMed Abstract | CrossRef Full Text | Google Scholar

Pan, Y., Gao, F., Zhao, S., Han, J., and Chen, F. (2021). Role of the SphK-S1P-S1PRs pathway in invasion of the nervous system by SARS-CoV-2 infection. Clin. Exp. Pharmacol. Physiol. 48, 637–650. doi: 10.1111/1440-1681.13483

PubMed Abstract | CrossRef Full Text | Google Scholar

Pezzini, A., and Padovani, A. (2020). Lifting the mask on neurological manifestations of COVID-19. Nat. Rev. Neurol. 16, 636–644. doi: 10.1038/s41582-020-0398-3

PubMed Abstract | CrossRef Full Text | Google Scholar

Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615.

Google Scholar

Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S., and Griffith, B. (2020). COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296, E119–E120. doi: 10.1148/radiol.2020201187

PubMed Abstract | CrossRef Full Text | Google Scholar

Pucci, F., Annoni, F., Dos Santos, R. A. S., Taccone, F. S., and Rooman, M. (2021). Quantifying renin-angiotensin-system alterations in COVID-19. Cells 10:2755. doi: 10.3390/cells10102755

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Qin, Y., Wu, J., Chen, T., Li, J., Zhang, G., Wu, D., et al. (2021). Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J. Clin. Invest. 131:e147329. doi: 10.1172/JCI147329

PubMed Abstract | CrossRef Full Text | Google Scholar

Radmanesh, A., Raz, E., Zan, E., Derman, A., and Kaminetzky, M. (2020). Brain imaging use and findings in COVID-19: a single academic center experience in the epicenter of disease in the United States. Am. J. Neuroradiol. 41, 1179–1183. doi: 10.3174/ajnr.A6610

PubMed Abstract | CrossRef Full Text | Google Scholar

Ragheb, J., McKinney, A., Zierau, M., Brooks, J., Hill-Caruthers, M., Iskander, M., et al. (2021). Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: a cohort study. BMJ Open 11:e050045. doi: 10.1136/bmjopen-2021-050045

PubMed Abstract | CrossRef Full Text | Google Scholar

Reynolds, J. L., and Mahajan, S. D. (2021). SARS-COV2 Alters Blood Brain Barrier Integrity Contributing to Neuro-Inflammation. J. Neuroimmune Pharmacol. 16, 4–6. doi: 10.1007/s11481-020-09975-y

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Rhally, A., Griffa, A., Kremer, S., Uginet, M., Breville, G., Stancu, P., et al. (2021). C-reactive protein and white matter microstructural changes in COVID-19 patients with encephalopathy. J. Neural Transm. 128, 1899–1906. doi: 10.1007/s00702-021-02429-6

PubMed Abstract | CrossRef Full Text | Google Scholar

Rocha, N. P., Simões, E. S. A. C., and Teixeira, A. L. (2021). Editorial: the role of the renin-angiotensin system in the central nervous system. Front. Neurosci. 15:733084. doi: 10.3389/fnins.2021.733084

PubMed Abstract | CrossRef Full Text | Google Scholar

Rodríguez-Alfonso, B., Ruiz Solís, S., Silva-Hernández, L., Pintos Pascual, I., Aguado Ibáñez, S., and Salas Antón, C. (2021). (18)F-FDG-PET/CT in SARS-CoV-2 infection and its sequelae. Rev. Esp. Med. Nucl. Imagen. Mol. 40, 299–309. doi: 10.1016/j.remnie.2021.07.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Rogers, J. P., Chesney, E., Oliver, D., Pollak, T. A., McGuire, P., Fusar-Poli, P., et al. (2020). Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 7, 611–627. doi: 10.1016/S2215-0366(20)30203-0

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Rudroff, T., Workman, C. D., and Ponto, L. L. B. (2021). 18 F-FDG-PET imaging for post-COVID-19 brain and skeletal muscle alterations. Viruses 13:2283. doi: 10.3390/v13112283

PubMed Abstract | CrossRef Full Text | Google Scholar

Ruggiero, R. N., Rossignoli, M. T., Marques, D. B., de Sousa, B. M., Romcy-Pereira, R. N., Lopes-Aguiar, C., et al. (2021). Neuromodulation of hippocampal-prefrontal cortical synaptic plasticity and functional connectivity: implications for neuropsychiatric disorders. Front. Cell Neurosci. 15:732360. doi: 10.3389/fncel.2021.732360

PubMed Abstract | CrossRef Full Text | Google Scholar

Sanches, M., and Teixeira, A. L. (2021). The renin-angiotensin system, mood, and suicide: are there associations? World J. Psychiatry 11, 581–588. doi: 10.5498/wjp.v11.i9.581

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Sierra, C., Coca, A., Gómez-Angelats, E., Poch, E., Sobrino, J., and de la Sierra, A. (2002). Renin-angiotensin system genetic polymorphisms and cerebral white matter lesions in essential hypertension. Hypertension 39, 343–347. doi: 10.1161/hy02t2.102912

PubMed Abstract | CrossRef Full Text | Google Scholar

Solis, W. G., Waller, S. E., Harris, A. K., Sugo, E., Hansen, M. A., and Lechner-Scott, J. (2017). Favourable outcome in a 33-year-old female with acute haemorrhagic leukoencephalitis. Case Rep. Neurol. 9, 106–113. doi: 10.1159/000472706

PubMed Abstract | CrossRef Full Text | Google Scholar

Sooksawasdi Na Ayudhya, S., Laksono, B. M., and van Riel, D. (2021). The pathogenesis and virulence of enterovirus-D68 infection. Virulence 12, 2060–2072. doi: 10.1080/21505594.2021.1960106

PubMed Abstract | CrossRef Full Text | Google Scholar

Soriano, J. B., Murthy, S., Marshall, J. C., Relan, P., and Diaz, J. V. (2022). A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107. doi: 10.1016/S1473-3099(21)00703-9

CrossRef Full Text | Google Scholar

 

Strauss, S. B., Lantos, J. E., Heier, L. A., Shatzkes, D. R., and Phillips, C. D. (2020). Olfactory bulb signal abnormality in patients with COVID-19 who present with neurologic symptoms. Am. J. Neuroradiol. 41, 1882–1887. doi: 10.3174/ajnr.A6751

PubMed Abstract | CrossRef Full Text | Google Scholar

Teaima, A. A., Salem, O. M., Teama, M., Mansour, O. I., Taha, M. S., Badr, F. M., et al. (2021). Patterns and clinical outcomes of olfactory and gustatory disorders in six months: prospective study of 1031 COVID-19 patients. Am. J. Otolaryngol. 43:103259. doi: 10.1016/j.amjoto.2021.103259

PubMed Abstract | CrossRef Full Text | Google Scholar

Teijaro, J. R., Walsh, K. B., Cahalan, S., Fremgen, D. M., Roberts, E., Scott, F., et al. (2011). Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991. doi: 10.1016/j.cell.2011.08.015

PubMed Abstract | CrossRef Full Text | Google Scholar

Terpos, E., Ntanasis-Stathopoulos, I., Elalamy, I., Kastritis, E., Sergentanis, T. N., Politou, M., et al. (2020). Hematological findings and complications of COVID-19. Am. J. Hematol. 95, 834–847. doi: 10.1002/ajh.25829

PubMed Abstract | CrossRef Full Text | Google Scholar



Teuwen, L. A., Geldhof, V., Pasut, A., and Carmeliet, P. (2020). COVID-19: the vasculature unleashed. Nat. Rev. Immunol. 20, 389–391. doi: 10.1038/s41577-020-0343-0

PubMed Abstract | CrossRef Full Text | Google Scholar

Thye, A. Y., Law, J. W., Pusparajah, P., Letchumanan, V., Chan, K. G., and Lee, L. H. (2021). Emerging SARS-CoV-2 variants of concern (VOCs): an impending global crisis. Biomedicines 9:1303. doi: 10.3390/biomedicines9101303

PubMed Abstract | CrossRef Full Text | Google Scholar

Troyer, E. A., Kohn, J. N., and Hong, S. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 87, 34–39. doi: 10.1016/j.bbi.2020.04.027

PubMed Abstract | CrossRef Full Text | Google Scholar

Varatharaj, A., Thomas, N., Ellul, M. A., Davies, N. W. S., Pollak, T. A., Tenorio, E. L., et al. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882. doi: 10.1016/S2215-0366(20)30287-X

PubMed Abstract | CrossRef Full Text | Google Scholar

Varga, Z., Flammer, A. J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A. S., et al. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418. doi: 10.1016/S0140-6736(20)30937-5

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Wang, L., de Kloet, A. D., Pati, D., Hiller, H., Smith, J. A., Pioquinto, D. J., et al. (2016). Increasing brain angiotensin converting enzyme 2 activity decreases anxiety-like behavior in male mice by activating central Mas receptors. Neuropharmacology 105, 114–123. doi: 10.1016/j.neuropharm.2015.12.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Wenzel, J., Lampe, J., Müller-Fielitz, H., Schuster, R., Zille, M., Müller, K., et al. (2021). The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat. Neurosci. 24, 1522–1533. doi: 10.1038/s41593-021-00926-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Witvoet, E. H., Jiang, F. Y., Laumans, W., and de Bruijn, S. (2021). COVID-19-related diffuse leukoencephalopathy with microbleeds and persistent coma: a case report with good clinical outcome. BMJ Case Rep. 14:e242504. doi: 10.1136/bcr-2021-242504

PubMed Abstract | CrossRef Full Text | Google Scholar

Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.

Google Scholar

Xiang, B., Li, P., Yang, X., Zhong, S., Manyande, A., and Feng, M. (2020). The impact of novel coronavirus SARS-CoV-2 among healthcare workers in hospitals: an aerial overview. Am. J. Infect. Control. 48, 915–917. doi: 10.1016/j.ajic.2020.05.020

PubMed Abstract | CrossRef Full Text | Google Scholar



Xiong, Q., Xu, M., Li, J., Liu, Y., Zhang, J., Xu, Y., et al. (2021). Clinical sequelae of COVID-19 survivors in Wuhan, China: a single-centre longitudinal study. Clin. Microbiol. Infect. 27, 89–95. doi: 10.1016/j.cmi.2020.09.023

PubMed Abstract | CrossRef Full Text | Google Scholar

Xu, G., Li, Y., Zhang, S., Peng, H., Wang, Y., Li, D., et al. (2021). SARS-CoV-2 promotes RIPK1 activation to facilitate viral propagation. Cell Res. 31, 1230–1243. doi: 10.1038/s41422-021-00578-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Xydakis, M. S., Albers, M. W., Holbrook, E. H., Lyon, D. M., Shih, R. Y., Frasnelli, J. A., et al. (2021). Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 20, 753–761. doi: 10.1016/S1474-4422(21)00182-4

PubMed Abstract | CrossRef Full Text | Google Scholar

Yaghi, S., Ishida, K., Torres, J., Mac Grory, B., Raz, E., Humbert, K., et al. (2020). CoV-2 and stroke in a New York healthcare system. Stroke 51, 2002–2011. doi: 10.1161/strokeaha.120.030335

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Yeahia, R., Schefflein, J., Chiarolanzio, P., Rozenstein, A., Gomes, W., Ali, S., et al. (2022). Brain MRI findings in COVID-19 patients with PRES: a systematic review. Clin. Imaging 81, 107–113. doi: 10.1016/j.clinimag.2021.10.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Yildiz-Yesiloglu, A., and Ankerst, D. P. (2006). Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 969–995. doi: 10.1016/j.pnpbp.2006.03.012

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Yin, J., Li, C., Ye, C., Ruan, Z., Liang, Y., Li, Y., et al. (2022). Advances in the development of therapeutic strategies against COVID-19 and perspectives in the drug design for emerging SARS-CoV-2 variants. Comput. Struct. Biotechnol. J. 20, 824–837. doi: 10.1016/j.csbj.2022.01.026

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, X., Wang, F., Shen, Y., Zhang, X., Cen, Y., Wang, B., et al. (2021). Symptoms and health outcomes among survivors of COVID-19 infection 1 year after discharge from hospitals in Wuhan, China. JAMA Netw. Open 4:e2127403. doi: 10.1001/jamanetworkopen.2021.27403

PubMed Abstract | CrossRef Full Text | Google Scholar

Zheng, J. L., Li, G. Z., Chen, S. Z., Wang, J. J., Olson, J. E., Xia, H. J., et al. (2014). Angiotensin converting enzyme 2/Ang-(1-7)/mas axis protects brain from ischemic injury with a tendency of age-dependence. CNS Neurosci. Ther. 20, 452–459. doi: 10.1111/cns.12233

PubMed Abstract | CrossRef Full Text | Google Scholar

 

Zhou, F., Tao, M., Shang, L., Liu, Y., Pan, G., Jin, Y., et al. (2021). Assessment of sequelae of COVID-19 nearly 1 year after diagnosis. Front. Med. 8:717194. doi: 10.3389/fmed.2021.717194

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. doi: 10.1038/s41586-020-2012-7

PubMed Abstract | CrossRef Full Text | Google Scholar

Zhu, Y., Cao, M., Zheng, P., and Shen, W. (2021). Residual olfactory dysfunction in coronavirus disease 2019 patients after long term recovery. J. Clin. Neurosci. 93, 31–35. doi: 10.1016/j.jocn.2021.07.050

PubMed Abstract | CrossRef Full Text | Google Scholar

Ziaka, M., and Exadaktylos, A. (2021). Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit. Care 25:358. doi: 10.1186/s13054-021-03778-0

PubMed Abstract | CrossRef Full Text | Google Scholar